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Abstract-h the experiment of directional solidification of binary solutions, the salt-finger convection is 
usually found to occur prior to the onset of plume convection. The plume containing cold solute-rich liquid 
is ejected from the dendritic mushy zone, an anisotropic and inhomogeneous porous medium. The salt- 
finger convection is accordingly believed to be responsible for the formation of plume convection. In this 
paper. we seek the relation between the onset of salt-finger and plume convection in the mushy zone by a 
linear stability analysis. We begin with a general study on the influences of the anisotropic and inhomo- 
geneous permeability. thermal diffusivity, and solute diffusivity on the stability characteristics of salt-finger 
convection in the porous medium. Based on the results obtained, we consider the salt-finger instability in 
a real dendritic mushy zone identified from the experiment and find that the onset solute Rayleigh number 
R$, of salt-finger convection is invariably much larger than that of plume convection. It is therefore our 
belief that there is no salt-finger convection in the mush when the plume is initially ejected from the mush. 

1. INTRODUCTION 

IN THE directional solidification process of the con- 

centrated alloy, there is a dendritic region separating 
the melt from the pure solid region [ 1,2]. The dendritic 
mushy zone is a porous medium with anisotropic and 
inhomogeneous permeability, and possibly thermal 
and solute diffusivities. Since the dendrites arc 
immersed in the melt, the gradients of temperature 
and composition of the melt may destabilize the 
nominally motionless rest state, leading to the onset 
of silt-finger convection. This convective motion was 
related to the occurrence of freckling and other macro- 
segregation defects [3, 41. Although the precise mech- 

anism for the occurrence of freckles is not clearly 
understood at present, several investigations [3-Q 
nevertheless, concluded generally that the occurrence 
of freckles in the metallic alloys is related to the for- 
mation of plume convection. 

To explicitly pinpoint the conditions for the onset of 
plume convection during the directional solidification, 
Chen and Chen [9] systematically carried out a series 
of NH4CI-H20 experiments and indicated that the 
critical solute Rayleigh number across the mushy layer 
(R:,,) for the onset of plume convection lies in the 
range between 200 and 250. They also reported that 
salt-finger convection is always observed in the melt 
region right above the mush in all experiments in 
which the plume convection may or may not exist ; in 
addition, the convective motion in the mush after the 
plume convection occurs is not of salt-finger type but 
a bulk motion due mostly to the plume flow. In the 
present study, we would theoretically identify the 

relation between these two possible convections in the 

mush. Analysis of the convective motion in solidifying 
alloys is complicated by the fact that the temperature 
and composition in the mush are related by the equi- 
librium phase diagram, and by the fact that the phase 
change gives rise to a moving boundary problem. In 
this paper, we consider the simpler problem of onset 
of salt-finger convection in a saturating anisotropic 
and inhomogeneous porous substrate. in which no 
solidification effect is considered. 

Thermal convection in a porous medium with 
anisotropic permeability was first considered by Casti- 
nel and Combarnous [lo] who conducted an exper- 
imental and theoretical investigation. Epherre’s theor- 

etical work [I l] extended the analysis to account for 
thermal anisotropy. Wooding [ 121 considered the 
influences of temperature-dependent viscosity and 
anisotropic permeability on the size of cells at onset. 
Kvernvold and Tyvand [13] analyzed the onset and 
nonlinear development of thermal convection in more 
general anisotropic porous media. McKibbin [14] 
conducted an extensive study on the effects of ani- 
sotropy on the convective stability of a porous layer. 
The inhomogeneous effects in terms of permeability 
and thermal diffusivity on the convective instability in 
a porous medium were considered by Green and 
Freehill [15]. For the onset of salt-finger convection 
in a porous medium, Nield [ 161 analytically presented 
the stability characteristics for various boundary con- 
ditions in an isotropic and homogeneous porous 
medium. In the same porous medium, Taunton and 
Lightfoot [I71 made an extension of Nield’s analysis 
to more completely characterize the stability of 
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NOMENCLATURE 

wavcnumbct 

coefficients, equation (8) 
specific heat of fluid 
depth of the porous medium 
differential operator, did: 
coefficients. equalion (9) 

gravitational acceleration conslanl 
unit vector in -y-direction 
unit vector in ),-direction 
unit vector in z-direction 

pcrmcability tensor. equation (5) 
thermal diffusivity tensor. equation (6) 
solute diffusivity tensor, equation (7) 

three components of permeability. 
equation (5) 

pressure 
see equation (22) 
solute Rayleigh number, 

R/I(s,, - s,)& K?j(?\ i) 
thermal Rayleigh number. 

ar(T,,- T,M,,K,i(\‘ri, 1) 
salinity. total and disturbance quantity 
temperature, total and disturbance 

quantity 
velocity vector 
vertical components of disturbance 

/I 
v,(-1 

vv,(=) 

v,,(-) 

‘i\, 

I’ 

solute expansion cocficicnt 
functions of permeability variation in 
different directions 
functions of solute diffusivity variation in 
different directions 
functions of thermal diffusivity variation 
in different directions 

components of solute diff‘usivity 01 
species in fluid. equation (7) 
components of thermal diffusivity ol 

fluid. equation (6) 
dynamic viscosity 
kinematic viscosity 

density of fluid 
permeability ratio, K, IK, 

solute diffusivity ratio, I<,~, iK, 2 
thermal difrusivity ratio, ti, , !h-, + 

Subscripts 
b basic state 
1 lower boundary 
U upper boundary 
0 refcrcnce property 
I horizontal direction 

3 vertical direction. 

velocity. 

Greek symbols 
E thermal expansion coefficient 

Superscripts 
c critical value 

differentiation, did:. 

thermohaline convection. Later Tyvand [ 181 extended 
these two analyses to an anisotropic and homo- 
geneous porous medium. 

2. PROBLEM FORMULATION 

We consider a horizontal porous layer of thickness 

[I,,, and of horizontally infinite extent. The top and 
bottom boundaries are rigid walls maintained at 
different constant temperatures and salinitics, both 01 
which arc high at the top and low at the bottom. A 
Cartesian coordinate system is chosen with the origin 
at the bottom and the :-axis vertically upward. The 
steady continuity, momentum. energy. and concen- 
tration equations are [ 181, respectively. 

In the present study, we consider the onset of salt- 
finger convection in an anisotropic and inhomo- 
geneous porous medium, in which no solidification 
occurs. The porous medium is assumed to be hori- 
zontally isotropic and homogeneous but vertically 
anisotropic and inhomogeneous, which is generally 
true for the dendritic mushy zone [3-91. We first com- 
pare the calculated results with the existing data and 
then implement an extensive discussion on the sig- 
nificance of anisotropic and inhomogeneous effects 
on the stability of salt-finger convection, where the 
inhomogeneity is assumed to be an exponential func- 
tion varying with height and the vertical variations of 
inhomogeneity in both horizontal and vertical com- 
ponents are identical [15]. Finally. the real porous 
medium identified in the cxperimcnt of Chen and 
Chen [9] is considered to calculate the R:,,, of salt- 
finger convection, from which we reach the conclusion 
concerned with the relation between the onset of the 
plume and salt-finger convection. 

v-u=0 (I) 

/LU+K’ jVP+p,g[l -a(T--T,)+/~(S-S,,)]kj = 0, 

(2) 

u-VT= V.(K,*VT). (3) 

u.vs = v*(K,Y.VS). (4) 

in which the Boussinesq approximation is applied to 
Darcy’s law. In considering a horizontally isotropic 
porous medium, the permeability, thermal diffusivity. 
and solute diffusivity are diagonal tensors [IX] : 
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K = K,~,(,-)(ii+jj)+K,r,(=)kk, (5) 

KT = tiI.Ii~7.,(--)(ii+jj)+IC?.3~73(=)kk, (6) 

K, = ~.sl~.sl(~)(ii+~)+~KS3~S3(~)kk. (7) 

The V,(T). q18(:), and qs,(r), i = 1 and 3, are arbitrary 
functions account for vertical inhomogeneities of per- 
meability. thermal diffusivity, and solute diffusivity, 
respectively ; the coefficients K,, ti,,, and tirr, i = I and 

3, are constants. It is noted that the thermal diffusivity 
is obtained by dividing the thermal conductivity by 
the volumetric heat capacity of the fluid (poC,),, 

where C, is the specific heat of the fluid. The principal 
axes of permeability, thermal diffusivity. and solute 

diffusivity of the porous medium are assumed to be 
coincident. Since the principle of exchange of insta- 

bilitics holds for salt-finger convection in either a 
porous medium [ 161, an anisotropic porous medium 
[18]. or an inhomogeneous porous medium [l5], WC 
accordingly assume that it also holds for the present 

situation. Thus, the time derivatives will be dropped 
from the disturbance equations, and hence omitted 
from (2). (3), and (4). 

The boundary conditions arc that at the upper 
boundary T = T,,. S = S,,, and the vertical velocity 
vanishes; at the lower boundary T = T,, S = S,, and 

the vertical velocity vanishes. In the horizontal direc- 
tions the boundary conditions are taken to be 

periodic. The steady basic state is quiescent. After 
applying relevant boundary conditions on (3) and (4), 
we obtain the basic temperature and salinity dis- 
tributions. respectively, 

(9) 

where C,, CZ, D,. and D? arc arbitrary constants In these final equations, we have nondimensional 
depend upon the boundary conditions as the functions horizontal wavenumber CI,, which is the separation 
q?.,(z) and vs.(:) are specified. The pressure is hydro- constant of normal mode expansion. The boundary 
static and need not be presented here. conditions on the top and the bottom walls are 

We operate on the momentum equation (2) with 
V x (K * V) x and then take the vertical component to 

eliminate the pressure. To render the equations 
nondimensional, we choose &,, as the length scale 
so that the layer is of unit depth. We also choose 
the characteristic velocity as v/d,,,. temperature as 

(T” - T&/k., 7. and salinity as (S, --S,)V/K,~~. We then 

decompose the velocity, temperature, and salinity 
fields into basic state and disturbance quantities, and 
linearize the equations for the latter. The non- 
dimensional disturbance equations, written in the 
same notation as the dimensional (2). (3), and (4) are 

W(l) = T(l) = S(1) = W(0) = T(0) = S(0) = 0. 

(19) 

The eigenvalue problem consists of a sixth-order ODE 
with six boundary conditions. We regard all thermo- 
physical properties of the porous medium as given. 
For a given stabilizing temperature gradient R,, we 

seek the eigenvalues R,, for given u,. We use a shoot- 
ing technique based on a hybrid Adams-Backward 
Difference method to solve this ODE system. An 
Adams method is used as the family of nonstiff 
methods, and backward differentiation formulas as 
the family of stiff methods. The calculation starts at 
the bottom and ends at the top. For details of the 
computational procedure, the reader is referred to 
Chen et al. [l9]. = r/,[R,,V:T-R,,V$], (lo) 

where VI = (:‘/c’.u’+?‘/?~’ is the horizontal Lapla- 

cian. The elements of the permeability, thermal diffu- 
sivity, and solute diffusivity tensors are scaled accord- 

ing to g = K,/K,, <, = x7 ,/Ic~~. and tY = tis,/tigl. 
The thermal and solute Rayleigh numbers arc, respec- 

tively, 

R,, = MT, - T,)&KJ(r’k.-l I). (13) 

R,,,, = gB(S,-S,)u’,,,Kll(vti,,). (14) 

which are defined in terms of the vertical permeability 
K,, thermal diffusivity Key, and solute diffusivity tis3. 
The dimensionless boundary conditions at the top and 
bottom walls are 

W(l) = T(l) = S(1) = W(0) = T(0) = S(0) = 0. 

(15) 

We apply the normal mode expansion of the depen- 
dent variables and use D to denote the differential 
operator d/d: and obtain the eigenvalue problem con- 
sisting of the following ordinary differential equations 

(ODES) : 

(16) 
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3. RESULTS AND DISCUSSION 

WC begin in Section 3.1 with a discussion on the 
anisotropic cffcctccts in which an extention of the work 

of Tyvand [I81 is carried out. The inhomogeneous 
cff‘ccts arc discussed in Section 3.2. In Section 3.3 
an anisotropic and inhomogeneous porous medium 

idcntificd in Chcn and Chcn [9] is used to investigate 

the onset condition for salt-finger convection. then a 
discussion on the relation between the stabilities of 

salt-finger and plume convection is given. 

3.1. Anisotropic &fwt.s 

In an analysis of the salt-finger instability in aniso- 
tropic porous media. Tyvand [l8] obtained an exact 

solution 

(20) 

The corresponding critical wavenumber rr:,, is dctcr- 

mined by the polynomial 

Qj+aiQ1+rrzQ’+N,Q+cr,, = 0, (21) 

whcrc 

Only positive real roots for Q have physical sense. 

Tyvand proved that there is only one positive real 
root and. therefore. there is always only one mode for 
the onset of salt-finger convection. We calculate the 
root of Q by Newton-Raphson iteration scheme and 
obtain the R:,,, and c/t,, for various <, <,, &. and 
R,,. These results compare excellently with those 

obtained by our numerical integration. Please note 
that the definitions of R,,, and R,,,, in (I 3) and (14). 
respectively, arc different from those in Tyvand by a 

negative sign. 
To illustrate the physical significance of the aniso- 

tropies, we use equations (20)-(22) to systematically 
calculate the RF,,, and a:, for R,,, = I, 50 and <T = I. 
0.1 in 0.1 < < < I and 0.1 d <,Y d I. The R,, = 50 is a 
reasonable scale for a laboratory setup in which a 3 
cm thick porous layer consisting of 3 mm diameter 
glass beads is immersed in a small concentration salt- 
water solution. The R,, = 1 scale. according to the 
experiment of Chen and Chen [9], is relevant to the 
thermal gradient across the dendritic mushy layer as 
the plume convection thresholds. The reason to select 
only two values of 5, = I and 0.1 is that we find the 

influence of 5, on the stability characteristics is much 
smaller than that of cithcr < or <,. The influcncc of 
<,. however, becomes more profound as R,,, incrcascs. 
The exact solutions (20)-(21) of aforcmcntioncd casts 
are presented in Figs. l-3. According to equations 

(I 3) and ( l4), R,,, and R,,,, arc defined in terms of the 
vertical permeability K,. vertical thermal difksivity 
/c, ?, and vertical solute diffusivity fcyl. WC consider 
the values of thcsc three properties as fixed in inter- 
preting the physical meaning of the results shown in 

Figs. l-3 as well as subscqucnt rclcvant figures in this 
paper. Accordingly, smaller <, for example. implies 
smaller horizontal permeability. The same implication 
applies for both <, and &. 

For R,,, = I and <, = I (Figs. I (a). (b)). both R:,,, 
and cl;,, incrcasc with decreasing 2. Bccausc smaller 
horizontal permeability inhibits horizontal fluid 

motion, the motionless state is thus stabilized and 
thcrcforc R:,,, increases. Since larger rcsistancc to hori- 
zontal flow also leads to a shortening of the horizontal 
critical wavelength, rr;,, accordingly increases with 
dccrcasing <. In the same tigurcs, one sees that R:,,, 
increases and tr:,, dccrcascs with increasing &. Phys- 

(b) 

FIG. I. Anisotropic erects on the critical conditions Ihr 
R,,, = I and <, = I. (a) RF,,: (b) rr:,,. 
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(b) 

FIG. 2. Anisotropic effects on the critical conditions for 
R,=50andt,=l.(a)R”,;(b)a’,. 

ically, this means larger solute diffusivity in horizontal 
direction corresponds to stabilization of the base state 
with larger critical wavelength. This can be explained 
by the fact that as ls increases, the mass contained in 
a fluid parcel is easier to lose in the horizontal direc- 
tion, and hence the fluid parcel is easier to homogenize 
its concentration with ambient fluid and leads to sta- 
bilization as well as larger critical wavelength. Note 
that the increase of stabilization due to the decreases 
of 5 is about the same with that due to the increase of 
& for the present case. Similar conclusion applies for 

the increase of a’, due to both decreasing 5 and &. 
We also investigate the case for tT = 1 with the same 
R, and find that the difference between the results of 
t7 = 1 and 0.1 is negligible. 

For R, = 50 and sr = 1 (Figs. 2(a), (b)), both R:, 
and a: again increase with decreasing 5. The vari- 
ations of both these values with 5 for R, = 50 are very 
close to those for R, = 1. This means the influence of 
permeability anisotropy on the stability characteris- 
tics does not change with different stabilizing thermal 
gradient. Both the increase of R&, and decrease of 
a’, with increasing &, however, are much larger for 

(b) 

FIG. 3. Anisotropic effects on the critical conditions for 
R, = 50 and tr = 0.1. (a) R’, ; (b) a’,. 

R, = 50 than for R, = 1. It is known that larger 
stabilizing thermal gradient (i.e. larger R,) needs 
larger destabilizing solute gradient (i.e. larger R,,) to 

make the conduction state unstable. The need for 
larger R, is enhanced for larger horizontal solute 
diffusivity because the mass is diffused faster hori- 
zontally so that a larger vertical solute gradient is 
necessary for building up the potential of desta- 
bilization. With regard to a:, the decrease of a: with 

increasing & is also enhanced for larger R,, but its 
physical mechanism of this enhancement is not 
immediately clear. 

In considering the thermal anisotropy of t7 = 0.1 

for R, = 50 (Figs. 3(a), (b)), it is found that the 
influence of 5 is still the same but the increase of R& 
and the decrease of a; with increasing & is reduced 
compared with those of tT = 1, R, = 50. It is known 
that as eT decreases, a heated fluid parcel loses less 
heat in the horizontal directions, and hence retains its 
stabilizing factor better and therefore the base state 
needs larger destabilizing solute gradient (i.e. larger 
RS,) to lead to destabilization with larger critical 
wavelength. As a result, the R&, in Fig. 3(a) is gen- 
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erally larger than the corresponding R&, in Fig. 2(a) 
and the a: in Fig. 3(b) is smaller than the cor- 
responding ah in Fig. 2(b). 

For convenience in subsequent discussions, we 
summarize the influence of the anisotropies in the 
following : 

To R:, : 

1. Decreasing 5 leads to increasing R&-negative 
effect. 

2. Increasing &. leads to increasing R&,-positive 
effect. 

3. Decreasing ST leads to increasing R$,,-negative 
effect. 

4. As far as the cross effect is concerned, the indi- 
vidual effect of each anisotropy will not be changed 
in trend by the inclusion of the other anisotropic effect. 
For example, the decreasing variation of R&, with 
increasing 5 will not become an increasing variation 
when the influence of either &. or [r comes into 
play. However, a positive anisotropic effect can be 
enhanced by another positive effect and be reduced 
by the other negative effect. For instance, the increase 
of Rx,,, with decreasing t is enhanced for larger ts but 
is reduced for larger 17.. 

5. The rule of cross effect does not apply for the 
effect of R,. Note that R&, increases with increasing 
R, (positive effect). Nonetheless, increasing R, does 
not affect the influence of 5 but makes the influences 
of both & and t7. more profound. 

To a’ : 
1. Dzcreasing 5 leads to increasing a:-negative 

effect. 
2. Decreasing <s leads to increasing a:-negative 

effect. 
3. Increasing t7. leads to increasing ah-positive 

effect. 
4. The cross-effect rule for R&, also applies for a;. 
5. Larger R, leads to larger a’,, makes no difference 

on the influence of 5, leads the influence of tT to be 
less profound but that of & more profound. 

The above conclusions are reached on the basis of the 
results for 5, {r, and & lying in the range between 
0.1 and I. For the range between 0 and 0.1, these 
conclusions are also valid [19]. For the range larger 
than 1, these conclusions generally hold except that 
the effect of tr may become opposite as in- 
homogeneous effects are simultaneously considered, 
which will be discussed in Section 3.3. We note that 
although (20) may also throw light on the anisotropic 
effects on RE,,, (but not on a: through equations (21)- 
(22)) as discussed above, the quantitiative illustrations 
of these effects as shown in Figs. 1 (a)-3(a) are more 
concrete. 

To gain more physical insights into the nature of 
salt-finger instability in anisotropic porous medium, 
we present the onset streamline patterns for various 
5, lr, and &-. The streamline patterns are obtained 
by converting the eigenfunction of perturbed vertical 

velocity W, which is obtained by the numerical inte- 
gration of present study. For each streamline plot, 
the width represents half critical wavelength of the 
perturbed flow and the height is the thickness of the 
porous layer. In total eleven streamline plots are 
shown in Fig. 4. In the first column of plots, the 
onset convection cells of R, = 1 and tr = & = 1 are 
presented in Fig. 4(al) for 4 = 1, in Fig. 4(a2) for 
5 = 0.5, and in Fig. 4(a3) for c = 0.1. It is seen that 
the aspect ratio (the height divided by the width) of 
the cell is larger for smaller 5 since larger horizontal 
resistance to the flow shortens the horizontal critical 
wavelength. Please note that only one plot is shown 
in the first array because they are all identical for 
R, = 1 and 50 when 5 = <r = &. = 1. In the second 
column, the cells of R, = 1 and 5 = t7. = 1 are pre- 
sented in Fig. 4(b2) for <r = 0.5 and in Fig. 4(b3) for 
& = 0.1. It is seen that the decrease of horizontal 
thermal diffusivity does not considerably influence the 
cell size for the present case. In the third column, the 
cells presented are for R, = 1 and f = tr = 1, where 
Fig. 4(c2) is for &. = 0.5 and Fig. 4(c3) for & = 0.1. 
As the same with the effect of varying 5, the decrease 
in horizontal solute diffusivity (decreasing ts) reduces 
the critical wavelength. The streamline patterns for 
R, = 50, c7. = ts = 1, 5 = 1,0.5, and 0.1 (not shown) 
are identical with the corresponding ones shown in 
Figs. 4(al)+a3), respectively, because the increase 
of stabilizing thermal gradient does not influence the 
anisotropic permeability effect. We present the onset 
cell for R, = 50, 5 = &. = 1, r7. = 0.5 and 0.1 in Figs. 
4(d2) and 4(d3), respectively. It is seen that larger R, 

enhances the increase of critical wavelength due to 
decreasing tr. Similarly, as shown in Figs. 4(e2) and 
4(e3) for & = 0.5 and 0.1, respectively, when R, = 50 
and 5 = <r = 1, the decrease of critical wavelength 
due to decreasing &. is also enhanced by increasing 
R,. Finally, one notices that the maximum of W 

always lies at the half height of the layer, the ani- 
sotropies of the porous medium influence only the 
width but not the height of the convection domain. 

3.2. Inhomogeneous effects 
To examine the inhomogeneous effects, we assume 

in this section that the porous medium is isotropic, 
i.e. 5 = 5r = & = 1. We also assume the vertical vari- 
ations of inhomogeneity in both the horizontal and 
vertical directions are exponential functions ; in other 
words, we have 

V,(Z) = V,(z) = eAZ, 

VT,(Z) = %-3(z) = eBZ, 

qs, (2) = fJs3(z) = ec’. (23) 

With this assumption, the anisotropies do not change 
due to the inhomogeneities and vice versa. Accord- 
ingly, the inhomogeneous effects do not couple with 
the anisotropic effects. The assumption of exponential 
function can be qualitatively justified by the obser- 

vations of experiments [3, 91. In equation (23), the 
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1~1 0 
al 

d3 

FIG. 4. ‘&e streamline patterns in an anisotropic and homogeneous porous layer at se&ted values of 4, 
cr, and & for R,=l and 50. (al) <=I, cr=&=l, R,=l; (a2) 5=O.K <~=cs=l. R,=l; 
(a3) 5 = 0.1, tr = &. = I, R, = 1; (b2) lT = 0.5, 5 = 4s = 1, R, = 1; @3) 5~ = 0.1, C: = 5s = 1, R, = 1 i 
(~2) ls = 0.5, r = tT = 1, R, = 1; (~3) e, = 0.1, t = 42 = 1, R, = 1; (d2f & = OS, t = ts = 1, & = 50; 
(d3)~,=0.1,~=~,=I,R,=50;(e2)~,=0.5,g=~T=1,R,=5O;(e3)g,=O.l,~=1”~=~.R,=5O. 

parameters A, B, and C range from zero in homo- 
geneous case to a non-zero value in inhomogeneous 
case. With the definitions of (23) the inhomogeneous 
functions are unity at bottom (Z = O), increase 
upwards with z when the parameters are positive and 
decrease when negative. In addition, for positive par- 
ameters, the bulk values of ~e~eability and dilTu- 
sivities are larger than those of homogeneous case, 
and vice versa for negative parameters. 

The inhomogeneous effects can be. categorized as 
local effect and bulk effect [20]. For the inhomo- 
geneous permeability effect, for instance, as A is 
largely positive, the local pe~eability in the upper 
part of the layer is so large that the onset of convection 
occurs locally underneath the top boundary and thus 
reduces the critical wavelength-l~al effect; for simi- 
lar A, the overall permeability of the porous layer 
becomes large that the conduction state is easier to be 
destabilized and the R&, is smaller-bulk effect. In 
this section, we discuss the bulk effect first by focusing 
on the single effect due to each of three inhomo- 
geneities for both R, = 1 and 50. Then the local effect 
is discussed by the illust~tions of streamline patterns 
at the onset. 

We frrst examine each single inhomogeneous effect 
for R, = 1. The variations of R:,,, and &, with A, B, 
and C are shown in Figs. 5(a), (b), and (c), respec- 
tively. In Fig. 5(a), B = C = 0, R& decreases mono- 
tonically with increasing A and the increase of a”, 
with IAl is symmetric with respect to A = 0. As 
explained previously, increasing A leads to a less stable 
state due to the increase of bulk ~~eabiiity and 
to a smaller critical wavelength due to local occur- 
rence of the onset of convection (seen in Fig. 7). As 
regards the effect of inhomogeneous thermal diffu- 
sivity (Fig. S(b)), both R& and a’, decrease mono- 
tonically with increasing B and reach to be constants 
of Rk;, = 4a2 and a”, = x, respective, with an asymp- 

totic approach. In fact, at B x 1, R& differs from 4x2 
only by 1% and S, reaches to be R at even smaller B. 
This means for B 2 1 with R, = 1 and A = C = 0, 
the stability characteristics of salt-finger convection 
(double-diffusive convection) are essentially identical 

10” 10.0 

80 

ld 
R:m 

60 a: 

IO’ "'.' .'. "_ 40 .-..... . .,, .,. ,,,,, ,,_,(,, .._ 

2.0 

10” 00 (a) 
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A 

lo"j,,.',,.',,,'..,',.. 1Oo 
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FIG. 5. Inhomogeneous effects on the critical conditions for 

R,=l.(a)B=C=O;(b)A=C=O;(c)A=f3=0. 
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with those of thermal convection (single-diffusive con- 
vection). Physically, it means that the stabilizing ther- 
mal gradient vanishes as B increases to a large enough 
value because increasingly positive B results in a large 
bulk thermal diffusivity to homogenize the tem- 
perature variation in a short time. Under such a cir- 
cumstance, the stabilizing thermal gradient disappears 
and the destabilizing solute gradient serves as the only 

diffusion agency in the convection so that the stability 
characteristics of the salt-finger convection are the 

same with those of thermal convection. It is also found 
that the critical B’, at which a souble-diffusive con- 
vection becomes a single-diffusive connection, 
increases with R, and this will be confirmed later. 
With regard to the inhomogeneous effect of solute 

diffusivity (Fig. S(c)), Rz,,, increases monotonically 
with C and, as that due to varying A, the increase of 
a: with ICI is symmetric with respect to C = 0. The 
increase of a’, due to the variation of C is larger 
than that due to the variation of A. For R, = 50, the 
corresponding cases to Figs. 5(a)-(c) are shown in 
Figs. 6(a)-(c), respectively. In general, the influence 
of inhomogeneity for R, = 50 is similar in qualitative 

sense to that for R, = 1. Quantitatively, both Rz,,, and 
u’, for R, = 50 are larger than the corresponding ones 
for R,, = 1 except that the variation of a: with A as 

B = C = 0 does not change with R,. The B’ of 
R, = 50 is approximately 6.2, which is not shown in 
Fig. 6(b) 
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FIG. 6. Inhomogeneous effects on the critical conditions for 
R,=50.(a)B=C=O;(b)A=C=O;(c)A=B=O. 

To illustrate the local effect due to the in- 
homogeneities of the porous medium, we present the 
onset streamline patterns for R, = 1 and 50 in Fig. 7, 
in which A, B, and C vary from I to - I. In the first 

column, we have the onset cells for A = I, 0, and - 1 
in Figs. 7(al), (a2), and (a3), respectively, in which 
R, = 1 and B = C = 0. For A = I, the permeability 
increases upwards so that the onset of convection 
occurs locally in the upper part of the layer, where the 
permeability is larger. For A = 0, the porous medium 

is homogeneous and isotropic so that the cell lies at 
the middle of the layer. In fact, the plots in the second 
array of Fig. 7 are all identical because they are the 
same cases. For A = - I, the onset cell occurs in the 

lower part of the layer where the permeability is larger. 
As to the inhomogeneous thermal diffusivity effect, 
the onset cell for B = I (Fig. 7(bl)) is identical with 

the homogeneous and isotropic case since B’ is 
approximately unity for this case. For B = - 1 (Fig. 
7(b3)), the larger thermal diffusivity in lower part of 
the layer induces more convection because the sta- 
bilizing thermal gradient vanishes faster for larger 
thermal diffusivity so that the convection is easier to 

set in. In the third column, the onset cells of C = 1 
and - I for R,, = 1. A = B = 0 are shown in Figs. 

7(cl) and (~3) respectively. For larger solute diffu- 
sivity, the destabilizing solute gradient is easier to be 
vanished due to larger solutal diffusion so that the 
onset of convection is easier to threshold in the region 
of smaller solute diffusivity, and this is the case shown 

in Figs. 7(cl) and (~3). For R, = 50, the local effects 
of B and C are obvious as shown by Figs. 7(dl)-(d3) 

and 7(el)-(e3), respectively. For stronger stabilizing 
thermal gradient (i.e. larger R,,), these two effects are 
enhanced compared with those of R, = 1. The onset 
cells of B = C = 0, R, = 50 (not shown) are identical 
with those of R, = I in Figs. 7(al)-(a3) since the 
inhomogeneous permeability effect is not influenced 

by varying R,,. 

As we discussed previously, the salt-finger double- 
diffusive convection becomes a single-diffusive con- 
vection when B = B’, which increases with R,,. 

To illustrate this change of type of convection 
more systematically, we present in Fig. 8 several 
regions in terms of B and R,. Region I is for RC,,, > 

(1 + 10%)4n’, region 2 for (I +5%)47t’ < Rz,,, < 

(I + 10%)47?, region 3 for (1 + 1%)4x’ < Rb, < 

(1 + 5%)4n’, and region 4 for Rtm i (I + 1%)4n’, in 
which the stability characteristics of salt-finger con- 
vection are almost identical with those of thermal 
convection. We thus define the boundary between 
regions 3 and 4 as the critical boundary, at which 
the double-diffusive convection becomes the single- 
diffusive convection in terms of stability character- 
istics and the B of this curve is named B’. This 
figure would provide a clear picture for a quick 
estimation of the influence of inhomogeneity of 
thermal diffusivity on salt-finger instability for vari- 
ous R,. If B = 10, for example, one can roughly 
predict that the stability characteristics of salt-finger 
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FIG. 7. The streamline patterns in an isotropic and inhomogeneaus porous layer at selected values of A, 
B,andCforR,=Iand50.(al)A=I,B=C:=O.R,=I;(a2fA-O,B=C=O,R,=f;(a3)A=-I, 
B=C=O, R,=l, (bl) B=l, A=C=O, R,==l, (b3) B=-I, A=C=O, Rm=l: (cl) C=I, 
A=B=O,R,=~;(~~)C=-I,A=B=O,R~P,=~;(~~)B=~,A=C=O,R,=~O;(~~)B=-~, 

A = C = 0, R, = 50; (el) C = 1, A = B = 0, R, = 50; fe3) C = - 1, A = B = 0, R, = 50. 

convection are very similar to those of thermal 
convection for a reasonably large range of R,. 
When other inhomogeneities come into play. i.e. 
A and C are non-zero, this figure can also provide 
valuable information with reasonable accuracy and 
this will be discussed later. 

Again, we summarize the inhomogeneous effects of 
R&, and UT, as follows : 

1. R$,, decreases with increasing A whereas a& 
increases with IAl and is symmetric with respect to 
A = 0. 

2. Both R&, and a”, decrease with increasing B and 

~.,...,.,.,..,,...,..,,...,...,...,.., 
10 20 30 40 50 60 70 80 90 1 

% 

FIG. 8. The critical boundary B” for various R, as A = C: = 0. 

reach 4n2 and X, respectively, at B”, which increases 
with Rm. For B > B”, the stability characteristics of 
salt-finger convection are almost identical with those 
of thermal convection. 

3. R$, increases with C, a”, increases with ICI and 
is symmetric with respect to C = 0. 

4. Larger R,,,, in general, results in both larger R& 

and a:. 

As to the cross effect due to inhomogeneities of 
the porous medium, we present two sets of results 
for R, = I and 50 in Figs. 9 and 10, respectively. 
For R, = I and B = 0 (Figs. 9(aI) and (a2)), R&, 
decreases monotonically with increasing A while 
increases with C, a’, increases with A for negative C 
while decreases for positive C. As C = 0, ak increases 
with [Al and is symmetric with respect to .4 = 0. For 
the same R,, but B = -3, both the decrease of Rz,,, 

with increasing A and the increase of R&, with increas- 
ing Care reduced by decreasing B. In other words, the 
influences of inhomogeneous permeability and solute 
diffusivity effect are reduced by decreasing B. With 
regard to a’, for decreasing B, except in the case of 
C = -5, the inhomogeneous effects due to per- 
meability and solute diffusivity are also diminished. 
We also study the case of R, = 1, B = 3 and find that 
the R&, and a”, differ from those in Figs. 9(al) and 
(a2), respectively, by a small amount. It is very diffi- 
cult, although important, to clearly identify the 
critical boundary for the cases of A and C being non- 
zero. We nevertheless present RLj, and a’, in Table 1 
for four selected non-zero values of A and C of R, = 1 
and 50 in the range 0 < B < 10. It is found that both 
Rz,,, and a’, approach constant values at smaller B’ 
for smaller A and C. Those constants should be the 
critical values for thermal convection case in the cor- 
responding porous medium. This impIication is con- 
firmed by comparing the results of either R, = I or 
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FIG. 9. Cross inhomogeneous effects on the critical conditions for R, = 1. (al) R&, for B = 0 ; (a2) ah for 
B=O;(bl)R&,forB= -3;(b2)a”,forB= -3. 

50, B = 10 (can be smaller), and A = C = 1 and - 1 
with the corresponding data shown in Figs. 1 (a) and 
(b) of Chen and Hsu [20], from which one can see the 
comparison is in excellent agreement. That means at 
sufficient large B, the salt-finger instability charac- 
teristics in a porous medium with inhomogeneous 
permeability and solute diffusivity are identical with 
those of thermal convection in the same porous 
medium. As a result, the conclusions made by Chen 
and Hsu are also applied for the present case as 
B > B’. In particular, the symmetry of a: with respect 
to A = 0 for C = 0, the symmetry between the a; of 
positive A and B and that of negative A and B, 
respectively, and the symmetry between the a’, of posi- 
tive A and negative B and that of negative A and 

positive B still hold. 
For R, = 50, the critical conditions for B = 0 and 

3 are illustrated in Figs. IO(a) and (b), respectively. 
For B = 3, the variation of Rz,,, with A (Fig. lO(b1)) 

is similar to that of B = 0, R, = 1 (Fig. 9(al)) while 
the ah in Fig. lO(b2) is generally larger than the cor- 
responding a: in Fig. 9(a2), but the variations of 
a: with A for both cases are still similar. A similar 

implication applies for the comparisons between Figs. 
9(bl) and lO(a1) and between Figs. 9(b2) and lO(a2). 
We, accordingly, may infer that, for B < B’, the 

stability characteristics of salt-finger convection for 
R, = 1 at a certain B are the same with those for 
R, = 50 at another B. More precisely, the Rz,,, and a$ 
for a certain pair of A and C are dependent on a pair 
of R, and B; therefore, a critical boundary in terms 
of R, and B as shown in Fig. 8 can be obtained for 
each pair of A and C. Due to the limit of computation 
resource, to identify the critical boundary for each 
pair of A and C is a formidable work to the present 
study. For small A and C, nevertheless, the critical 
boundary in Fig. 8 (A = C = 0) is still valid to some 
extent. 
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Table 1. The R&, and associated a”, for R, = 1 and 50 of inhomogeneous porous media 

B=O 8.16766 3.66 24.3606 
B=2 8.73571 3.66 24.0591 
B=4 8.73071 3.65 24.0132 
B=6 8.72964 3.65 24.0040 
B=8 8.72935 3.65 24.0016 
B= 10 8.72928 3.65 24.0009 

B=O 10.4848 3.89 41.6068 
B=2 9.04328 3.70 26.8413 
B=4 8.80325 3.67 24.6243 
B=6 8.75121 3.66 24.1751 
B=8 8.73710 3.66 24.0601 
B= 10 8.73241 3.65 24.0244 

R, = 1 
3.20 67.8999 
3.20 65.6454 
3.20 65.3230 
3.20 65.2623 
3.20 65.2416 
3.20 65.2432 

R, = 50 
3.29 190.144 
3.21 85.3222 
3.19 69.3134 
3.19 66.3236 
3.19 65.5968 
3.19 65.3787 

3.20 190.283 3.74 
3.19 117.637 3.66 
3.20 175.805 3.65 
3.20 175.462 3.65 
3.20 175.378 3.65 
3.20 175.353 3.65 

3.58 518.732 6.19 
3.16 287.154 3.94 
3.17 198.617 3.61 
3.18 181.150 3.62 
3.19 177.372 3.64 
3.19 176.130 3.64 
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3.3. The anisotropic and inhomogeneous porous medium 

Chen and Chen [9] employed the NH4C1-H,O 
solution as an analog system to examine the critical 
conditions for the formation of freckles during the 

directional solidification of concentrated alloys. By 
using the technique of computed tomography, they 
identified the vertical porosity distribution in the den- 
dritic mushy zone (Fig. 14 of Chen and Chen [9]). 

Except the shallow layer close to the interface between 
the mush and melt. the vertical distribution of 

porosity of the mushy zone is a linear function 

&z) = 0.08~+0.59, (24) 

where 4 is the porosity of the porous medium. From 
the observation of the photos taken in the exper- 
iments, they found that the sum of the diameter of 

primary dendrite arm d, and the primary arm space 
d, is approximately I mm. The arm space d, increases 
upwards and we may assume its variation in vertical 
direction is of the form (24). As a result, the averaged 
d, is about 0.63 mm and the averaged d, is 0.37 
mm. With these measurements, we may compute 

the physical properties of the mushy zone, which is 
generally anisotropic and inhomogeneous porous 
medium. 

To determine the vertical and horizontal per- 

meabilities with the measured porosity (24), d,, and 
d,, we use Blake-Kozeny models suggested by Poirier 

[21]. For vertical permeability, 

K,(Z) = 1.43 x 10~3~‘(-)df,‘(l -4(z)) (25) 

is chosen, in which K, and df are in mr and -7 is 

dimensionless independent variable, which is 0 at the 
bottom and 1 at the top. After applying (24) and 
d, = 0.63 mm in (29, the averaged value of vertical 
permeability is about 3.863 x IO-” ml. As regards 
horizontal permeability K,, we choose [21] 

K,(z) = 1.73x lo-’ 
d, 

0 

I I,‘) 
d d;$‘(,_)(l -$(-_)) “74’) 

2 

(26) 

in which K,, cl:, and d< are in m’. The averaged 
horizontal permeability is thus approximately 
2.277 x lo- ‘” m2. With these, the anisotropy of per- 
meability is obtained as < = 0.581, and we take 0.6 
for subsequent calculations. We assume the solute 
diffusivity in the solid of the porous medium is zero 
so that only the liquid serves to diffuse solute. We thus 
may imply that & = 5 = 0.6. With regard to tr, we 
leave it as a free parameter since no existing relation 
between either 5 and lT or tS and l7 is available [18]. 

The vertical inhomogeneous permeability is shown 
in (25). By substituting (24) into (25) and after some 
arrangements, we obtain 

K,(z) = 3.63 x 10~ ” x (~+7.375)‘/(5.125-z). 

(27) 

Which results in 

q3(=) = (z+7.375)‘/(5.125-I?) (28) 

and an averaged Darcy number b = K:‘(O.S)/d,, = 
1.811 x IO-‘, in which we assume d,,, = 0.01 m, the 
depth of the mushy zone corresponding to the onset 
of plume convection [9]. Similarly, we obtain the hori- 
zontal permeability 

K,(z) = 1.44x1O~“x(~+7.375)~/(5.125-~)“‘~’. 

(29) 

and thus 

S,(Z) = (~+7.375)‘/(5.125-z)“‘“‘. (30) 

Based on the assumption of no solute diffusivity in 
the solid of the mush, we have r~, (z) = qs,(z) and 

vi(z) = qs3(z). With regard to inhomogeneous ther- 
mal diffusivity, an exponential function as equation 
(23) is applied. According to Chen and Chen 191, the 
R, is small when the plume convection thresholds. 
We thus take R, = 1 for subsequent calculations. 

Based on above measured or estimated values and 
models, we compute the R& and a: in wide ranges of 
anisotropy and inhomogeneity of thermal diffusivity, 

alo” (a) 
00 2.0 40 6.0 8.0 10.0 

oo,, /, I, 
t (b) 

4.0' 
I I / 

00 2.0 

c, 6o lx0 1°.O 

FIG. 11. The critical conditions in an anisotropic and 
inhomogeneous porous layer R, = 1, 4 = ts = 0.6, with 
q,(z) = t),(z), i = 1 and 3 being specified in (28) and (30), 

respectively. (a) R:,,, : (b) a:. 
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whichcover0.1 < {,< lOand -2~ B< 10,andthe 

results are shown in Figs. 11 (a) and (b), respectively. 
As in previous discussions, R&, increases with both 

decreasing tT and B, a”, increases with decreasing 
B. The effect of tT on a”, concluded in Section 3.1, 
however, holds only for <r < 2 and becomes opposite 
for <r > 2. This may be due to the inclusion of 
inhomogeneities of permeability and solute diffu- 

sivity ; but the proper reason is not yet clear. From 
Figs. 11, it is seen that RF,,, asymptotically approaches 
to a value of 9456 and a’, to a value of 3.44 as both 
5,. and B increase. It is found that the R&, for the 
onset of salt-finger convection in the porous medium 

resulted from upward solidifying NH,Cl-H,O solu- 
tion is generally much higher than the RFm for the 
onset of plume convection, which according to the 
measurement of Chen and Chen [9] is within 200-250. 
In fact, the thermal diffusivity of the dendritic mushy 
zone is of finite <r and B. If we consider the dendrites 
to be of higher thermal diffusivity than the liquid, we 
may end up with a negative B, say B = - 1, and a CT. 
is about 1.67 (the inverse of 5). With these values, the 
R&, can be as high as O(lO’), which results in a much 
more stable conduction state. Consequently, we may 

thus draw a tentative conclusion about the relation 
between the salt-finger and plume convection in the 
mushy zone that, as the plume is initially ejected from 
the mush, there is no salt-finger convection in the 

mush. 

In fact, several factors existing in the real solidifying 
NH,Cl-H20 system, such as the solidification in the 
mush, the moving interface between the melt and 
mush, the strong salt-finger convection above the 
mush, and so on, are not considered in the present 
analysis. Although there is no direct evidence to sup- 
port that these three factors are not going to dra- 
matically reduce the R&,,, the following discussion 
may shed some light on supporting the tentative con- 

clusion. For considering the factor due to the salt- 
finger convection above the mush, the physical con- 
figuration of a porous layer underlying a fluid layer 

as considered in Chen and Chen [22] can be applied. 
In the experiment [9], the depth ratio (ratio of the 
fluid layer depth to the porous layer depth) is found 
to be always larger than unity (the depth of the fluid 
layer is determined by the height of the salt-finger 
convection cell). With this depth ratio, the salt-finger 
convection is largely confined to the fluid layer and 

the convection in the porous layer virtually vanishes 
[22]. This supports our tentative conclusion. As to the 

influence of moving interface, we do not expect that 
the R& for salt-finger convection will be substantially 
diminished by the moving interface since the moving 
velocity of the interface is much lower than the charac- 
teristic convective velocity of salt-finger. For the sol- 
idification effect in the mush, the solidifying liquid 
ejects lighter solution to the mush so that the desta- 
bilizing solute gradient is enhanced, thus the R&, may 
be reduced. To our best knowledge, there has been no 
supportive evidence would show that the deduction 

of R&, due to solidification can be as large as one 

thousand fold, which would change R&, from 0(105) 
to O(lO*). In summary, from above discussions, we 

may infer that the RC,,, with considering the afore- 
mentioned factors can be smaller than that of present 
analysis, but is believed to be larger by several fold 
than the R&, for the plume convection. We thus reach 
a tentative conclusion that as the plume convection 
occurs, there is no salt-finger convection in the den- 
dritic mushy zone. 
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